
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

Estimating Computational Noise∗

Jorge J. Moré and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P1721-0210

v0.2, March 2011

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. This

work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-

partment of Energy, under Contract DE-AC02-06CH11357.

Contents

1 Introduction 1

2 Noisy Computations 4

3 Algorithms for Estimating Noise 8

4 Estimating Noise for f : Rn 7→ Rq 10

5 Computational Experiments: Stochastic Computations 11

6 Deterministic Experiments: Krylov Solvers 15

7 Representative Data 18

8 Non IID Noise 19

9 Convergence Tests in Derivative-Free Optimization 21

10 Conclusions and Future Work 23

Estimating Computational Noise∗

Jorge J. Moré and Stefan M. Wild

Abstract

Computational noise in deterministic simulations is as ill-defined a concept as can

be found in scientific computing. When coupled with adaptive strategies, the effects of

finite precision destroy smoothness of the simulation output and complicate subsequent

analysis. Following the work of Hamming on roundoff errors, we present a new algo-

rithm, ECnoise, for quantifying the noise level of a computed function. Our theoretical

framework is based on stochastic noise but does not assume a specific distribution for

the noise. For the deterministic simulations considered, ECnoise produces reliable re-

sults in few function evaluations and offers new insights into building blocks of large

scale simulations.

1 Introduction

The simulation of complex phenomena invariably requires the approximation of a function

f∞ : Ω 7→ R by a function f : Rn 7→ R that can be evaluated with a finite number

of elementary operations. Evaluation of f∞ may require, for example, determining the

eigenvalues of a large matrix, solving a system of nonlinear partial differential equations, or

evaluating a multidimensional integral, while f represents the function determined by an

approximation scheme.

The development of the approximation f and the analysis of the truncation error made

in replacing f∞ by f is the domain of the numerical analyst. We do not study truncation

errors in this work; we are concerned with the computational noise generated by evaluating

f in finite precision. In simulation-based problems the value of f is known only within a

given tolerance as a result of adaptive strategies that are invariably used in the simulation;

together with finite precision evaluation, this uncertainty in the value of f gives rise to

computational noise. We are interested in determining the noise level of f and thus a

sensitivity interval for the possible values of f under small perturbations of the parameters.

We can obtain an intuitive feel for the computational noise of f around a base point xb
by evaluating f(x + h) for x in a neighborhood N(xb) and perturbations h and collecting

statistics on the differences f(x+ h)− f(x). For example, the scaled average(
1

2m

m∑
k=1

|f(xk + hk)− f(xk)|2
)1/2

(1.1)

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. This

work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-

partment of Energy, under Contract DE-AC02-06CH11357.

1

for xk in N(xb) and perturbations hk with ‖hk|| ≤ δ. In infinite precision, this average goes

to zero as δ goes to zero if f is continuous in N(xb), but in finite precision this situation

does not hold because of the noise in f .

We illustrate computational noise with a partial trace function f : Rn 7→ R defined as

the sum of the p smallest eigenvalues of a symmetric matrix A(x). For p = 5 we compute

f using the MATLAB function eigs with a random (but fixed) initial vector, a tolerance of

10−3, and A(x) = A0 + diag(x), where A0 is the (diagonally scaled) Trefethen 700 matrix

in the UF collection [7] of order n = 700 with a reciprocal condition number of 0.1. We

capture computational noise by plotting the differences f(xk+hk)−f(xk) as xk ranges over

a random two-dimensional subspace of Rn and hk has components in [0, δ] with δ = 10−10.

The image on the left of Figure 1.1 shows that in this case (1.1) should be about 10−9;

our computations show that (1.1) is about 3.2 · 10−9 and that this value remains roughly

constant for δ ∈ [10−10, 10−15]. The right of Figure 1.1 shows the function f along a line

segment with a spacing of h = 10−7. This image shows that the function is noisy also at

this scale, but the magnitude of the noise is not as apparent.

Figure 1.1: Computational noise for a partial trace function at a scale of δ = 10−10 (left)

and the function on a line segment with a scale of h = 10−7 (right).

Determining the noise level of a function f is important because it provides the standard

deviation for the values of a simulation defined by f . This interpretation of the noise level

has a rigorous justification if the output f(x) of a simulation is a random variable with an

expected value of µ and standard deviation εf . In this case the Chebyshev inequality

P
{
|f(x)− µ| ≤ γεf

}
≥ 1− 1

γ2
,

where P{·} is the probability of the event, implies that

|f(x)− µ| ≤ γεf (1.2)

is likely to hold for γ ≥ 1 of modest size. Thus, (1.2) holds in at least 99% of the cases

with γ = 10. Of course, tighter bounds are available if we have additional information on

the distribution of f . For example, if the distribution is normal, then (1.2) holds in at least

99.7% of the cases with γ = 3.

2

This argument shows that the value f(x) of a stochastic simulation is likely to be subject

to variations of order ±γεf for small γ. We emphasize deterministic simulation, and in this

case a similar result holds if we accept that the average (1.1) converges to the noise level as

δ converges to zero. Indeed, (1.1) shows that arbitrarily small perturbations are likely to

produce an average variation of order εf in the values of f . This is verified in the case of

the partial trace function displayed in Figure 1.1 since the algorithm that we will propose

produces a noise level εf of order 10−9.

Our work does not provide an upper bound on the roundoff errors in computing f .

Algorithms for roundoff error estimation aim at an upper bound on the accuracy of the

computed f as an approximation to the infinite precision value. For a discussion of these

algorithms, see [14, Section 2.6]. In contrast, our results only make assertions about the

value of f computed in working precision. Note, however, that if the value of f is subject

to variations of order εf under small perturbations of the parameters, then the roundoff

error in f is likely to be at least εf . In these cases the noise level εf is a lower bound on

the roundoff eror.

Knowledge of the noise level is also important for determining difference parameters

in approximations to derivatives of f . Previous work for gradients includes [9, 10, 18],

while [5, 15, 17] consider Jacobian-vector products for Newton-Krylov solvers. All of these

works assume that the noise level is a bound on the absolute error between the finite and

infinite precision representations of f(x). This assumption places the emphasis on a rigorous

bound and requires that the bound be on the rounding errors in the computed function.

We discuss the connection between computational noise and estimating derivatives in the

follow-up to this work [19].

We also note that other works, in particular, [2, 11, 22, 23], have studied the impact

of computational noise on simulation-based optimization problems where the parameters

depend on the solution of a differential equation. They note that computational noise arises

as a result of adaptive strategies in the solution of the differential equations, and study how

to replace the approximate gradient obtained with differences of function values with a

gradient based on solving the differential equations.

In this work we present a theoretical and computational framework for the study of

computational noise in a neighborhood N(xb) of a base point xb by assuming that

f(x) = fs(x) + ε(x), x ∈ N(xb), (1.3)

where f : Rn 7→ R is the computed function, fs : Rn 7→ R is a smooth function, and

the noise ε : Rn 7→ R is a (random) variable whose distribution is independent of x. The

standard deviation

εf = (Var{ε(x)})1/2

is then the noise level of the function. This model of computational noise assumes that f

is a stochastic process where the output of the simulation is a (random) variable. As we

will see, computations based on this model provide useful results when f is deterministic.

We study the one-dimensional case of model (1.3) in Section 2 and show how this model

extends the approach of Hamming [12, Chapter 6]. In this approach the function is sampled

3

at m + 1 equally spaced points, and the noise is determined from the kth-order difference

∆kf(t). Our main result shows that the noise level can be determined from the limit of the

expected value of ∆kf(t)2 as the sampling distance h goes to zero.

Section 3 outlines our algorithm, which we call ECnoise, for estimating the noise level εf
of a function f : R 7→ R. We discuss, in particular, the heuristics that are used to determine

the noise level from the kth-order difference. Section 4 extends the ECnoise algorithm to

Rn by defining the noise level of f in terms of the one-dimensional function t 7→ f(x+ tp),

where p is a sampling vector.

Section 5 studies the behavior of ECnoise on stochastic functions in terms of the number

of evaluations of f , the sampling direction p, and the sampling distance h. The numerical

results support the claim that ECnoise provides estimates of the noise level that are inde-

pendent of the direction p when the noise is stochastic. Moreover, these estimates can be

reliably obtained with m = 6 additional function evaluations (we assume that the function

value at the base point is already available) for a wide range of values of h.

We used the iterative solution of systems of linear equations to illustrate our results for

deterministic simulations because they are a building block in many simulations. Section 6

contains results for the conjugate gradient method, bicgstab, and minres on the symmet-

ric positive definite matrices in the University of Florida Sparse Matrix Collection [7] of

dimension less than 104.

Our results for deterministic problems are similar to those obtained for stochastic prob-

lems; the main difference is that we use smaller values of the sampling distance h and m = 8

additional function evaluations in ECnoise. This finding is surprising because the theory in

Section 2 assumes that the function is a stochastic process.

Some of the results in Section 6 illustrate the need for providing representative data to

ECnoise. We discuss these results in Section 7 and note that representative data is needed

because ECnoise determines information on a function defined on Rn from m + 1 function

values. Section 8 briefly discusses of cases where the deterministic simulation provides data

that cannot be modeled as an independent and identically distributed stochastic process.

We show that, nevertheless, ECnoise provides the noise level of the function. Moreover, we

indicate of future areas of research in Section 9 by illustrating the use of noise estimates in

convergence tests for derivative-free optimization solvers.

2 Noisy Computations

We consider determining the noise level of a scalar-valued function f : R 7→ R and then

show how to extend these ideas to more general functions f : Rn 7→ Rq. The model we use

assumes that the computed function f is of the form

f(t) = fs(t) + ε(t), (2.1)

where fs : R 7→ R is a smooth, deterministic function and ε : R 7→ R is the noise. We

determine the noise level of f in an interval I. The main assumption that we make is that

the random variables

{ε(t) : t ∈ I}

4

Figure 2.1: The function
√
t computed by Newton’s method for a starting point chosen

uniformly from [0, 1] and tolerance τ = 10−2 (left) and the error between the computed f

and MATLAB’s sqrt (right).

are independent and identically distributed (iid). The function f and the mean of the noise

determine fs since (2.1) implies that E {f} = fs + µ where E {·} is the expected value and

µ is the mean of the noise. We assume that fs is continuous but we do not make additional

assumptions on the function fs; we just need to assume that there is such a function. We

allow, in particular, fs ≡ 0.

We illustrate these assumptions with the function f computed by Newton’s method for

t 7→
√
t from a starting point chosen uniformly within [0, 1]. In this case f(t) is the first

iterate of Newton’s method such that |f(t)2 − t| ≤ τ = 10−2. On the left of Figure 2.1 we

see that the computed f looks like the smooth function
√
t but with the addition of the

noise shown on the right of Figure 2.1. Our goal is to quantify the noisy component of f

without requiring knowledge of fs.

Definition 2.1 The noise level of f in (2.1) is

εf = (Var {ε(t)})1/2 ,

where Var {·} is the variance of the random variable.

Definition 2.1 defines the noise level of the computed function as the standard deviation

of the random variables ε(·). This definition of the noise level is independent of t since we

have assumed that the random variables ε(·) are identically distributed.

The approach that we use to determine the noise level of a function is based on the work

of Hamming [12, Chapter 6]. In this approach, the function f is evaluated at m+ 1 equally

spaced points in the interval I. Without loss of generality, we choose t in the interior of I

and set

ti = t+ ih, i = 0, . . . ,m.

The ordering of the points is not important. All that is needed are the function values at

the points ti; the interval I can always be chosen to be the smallest interval that contains

all the points.

5

Hamming [12, Chapter 6] noted that the noise level of f can be recovered from the

kth-order differences of f defined by ∆0f = f and

∆k+1f(t) = ∆k [∆f(t)] = ∆kf(t+ h)−∆kf(t), k ≥ 0.

Hamming viewed the kth-order difference as the sum of ideal numbers plus roundoff noise;

he did not discuss the source of the ideal numbers. His interest was in estimating roundoff

errors, but his development is general. We formalize his approach and show that it applies

to the general model (2.1).

The following result of Hamming [12, Chapter 6] shows that the kth-difference of the

noise is closely related to the noise level εf . Hamming assumed that the noise ε(·) had zero

mean, but this assumption is not needed.

Theorem 2.2 If the random variables {ε(ti) : 0 ≤ i ≤ m} are iid, then

γkVar
{

∆kε(t)
}

= ε2f , γk =
(k!)2

(2k)!
, 1 ≤ k ≤ m. (2.2)

Proof. An induction argument shows that

∆kε(t) =

k∑
j=0

(−1)j
(
k

j

)
ε(t+ (k − j)h).

Since the random variables {ε(ti) : 0 ≤ i ≤ k} are independent and identically distributed,

Var
{

∆kε(t)
}

=
k∑
j=0

(
k

j

)2

Var {ε(t+ (k − j)h)} = ε2f

k∑
j=0

(
k

j

)2

.

The result now follows from the identity

k∑
j=0

(
k

j

)2

=
(2k)!

(k!)2
,

which can be established by noting that the term on the right is the coefficient of tk in

the expansion of (1 + t)2k, while the term on the left is the coefficient of tk in the product

(1 + t)k(1 + t)k. �

The motivation for Hamming’s observation is that the differences of the smooth function

fs tend to zero rapidly, while the differences of the noise are bounded away from zero. Since

the kth-order difference ∆k is a linear operator,

∆kf(t) = ∆kfs(t) + ∆kε(t).

Thus, if h is sufficiently small, ∆kf(t) ≈ ∆kε(t). Estimates for the rate of decay of ∆kfs(t)

are classical. Indeed, if fs is k-times differentiable on I, then

∆kfs(t) = f (k)s (ξk)h
k, (2.3)

6

where ξk lies in the interval (t, t+ kh). This is clear for k = 1. A proof of the general result

can be obtained by noting that for equally spaced points

∆kf(t) = k!f [t, t1, . . . , tk]h
k,

where f [t, t1, . . . , tk] is the divided difference, and then appealing to the result for divided

differences. See, for example, [20, page 338].

Theorem 2.3 Assume that the random variables {ε(t) : t ∈ I} are iid, and let γk be defined

by (2.2). If fs is continuous at t, then

lim
h→0

γkE
{

∆kf(t)2
}

= ε2f , 1 ≤ k ≤ m,

Further, if fs is k-times continuously differentiable at t, then

lim
h→0

γkE
{

∆kf(t)2
}
− ε2f

h2k
= γkf

(k)
s (t)2.

Proof. We first prove that ∆kε(t) has zero mean. Choose h small enough so that all of the

points ti are in I. Since the random variables {ε(ti) : 0 ≤ i ≤ k} are iid, it follows that

E
{

∆kε(t)
}

= E {ε(t)}
k∑
j=0

(−1)j
(
k

j

)
.

The proof that ∆kε(t) has zero mean is completed by noting that the Taylor expansion of

(1 + t)k at t = −1 shows that
k∑
j=0

(−1)j
(
k

j

)
= 0.

Since ∆kε(t) has zero mean,

E
{

∆kf(t)2
}

= ∆kfs(t)
2 + 2∆kfs(t)E

{
∆kε(t)

}
+ E

{
∆kε(t)2

}
= ∆kfs(t)

2 + Var
{

∆kε(t)
}
.

Theorem 2.2 now shows that

γkE
{

∆kf(t)2
}

= γk∆
kfs(t)

2 + ε2f .

The first result follows by noting that if fs is continuous at t, then ∆kfs(t) converges to

zero as h goes to zero. If fs is k-times differentiable on I, then (2.3) gives

γkE
{

∆kf(t)2
}

= γkh
2kf (k)s (ξk)

2 + ε2f , (2.4)

and the second result follows by noting that ξk ∈ (t, t+kh) and appealing to the continuity

of f
(k)
s . �

7

Theorem 2.3 shows that we can estimate the noise level εf from the mean of the squared

kth-column of a difference table. More precisely,(
γkE

{
∆kf(t)2

})1/2
, 1 ≤ k ≤ m,

converges to the noise εf as h goes to zero. In the following section we present an algo-

rithm for estimating this quantity and discuss conditions under which it obtains a suitable

approximation of the noise εf .

3 Algorithms for Estimating Noise

We now outline our algorithm, ECnoise, that determines an estimate to the noise level of a

function f : R 7→ R using m + 1 evaluations. In the next section we show how to use this

algorithm for a function defined on Rn.

ECnoise accepts as input the m + 1 function values at equally spaced points and, if

possible, produces an estimate of the noise level. The main ingredient of ECnoise is the

observation that Theorem 2.3 shows that the square of the noise level εf is approximately

γkE
{

[∆kf(ti)]
2
}
, 1 ≤ k ≤ m,

for any i = 0, . . . ,m − k when the sampling distance h > 0 is sufficiently small. The crux

of ECnoise is the choice of k and the test for determining that the sampling distance h is

sufficiently small.

We first compute the differences Ti,k = ∆kf(ti) for 1 ≤ k ≤ m and 0 ≤ i ≤ m− k. If we

set Ti,0 = f(ti), then the code fragment below computes the required differences.

do i = 0, m
T(i,0) = fval(i)

end do
do k = 0, m - 1

do i = 0, m - k
T(i,k+1) = T(i+1,k) - T(i,k)

end do
end do

By construction, Ti,k = ∆kf(ti). Given the array T , we approximate E
{

[∆kf(t)]2
}

by the

average so that the level-k estimate of ε2f is

σ2k =
γk

m+ 1− k

m−k∑
i=0

T 2
i,k.

These estimates satisfy the convergence results of Theorem 2.3. Indeed, (2.4) shows that

E
{
σ2k
}
− ε2f =

γk
m+ 1− k

m−k∑
i=0

h2kf (k)s (ξk,i)
2,

8

for ξk,i ∈ (ti, ti + kh). Applying the intermediate value theorem to the continuous function

f
(k)
s yields that

E
{
σ2k
}
− ε2f = γkh

2kf (k)s (ξk)
2, ξk ∈ [t, t+mh]. (3.1)

Thus, we can expect σk to converge to the noise level εf if f
(k)
s is continuous and k > 0. A

similar computation shows that convergence also holds if fs is continuous.

Table 3.1: Difference table for f(t) = cos(t) + sin(t) + 10−3U(0, 2
√

3)
(
m = 6, h = 10−2

)
.

f ∆f ∆2f ∆3f ∆4f ∆5f ∆6f

1.003 7.54e-3 2.15e-3 1.87e-4 -5.87e-3 1.46e-2 -2.49e-2

1.011 9.69e-3 2.33e-3 -5.68e-3 8.73e-3 -1.03e-2

1.021 1.20e-2 -3.35e-3 3.05e-3 -1.61e-3

1.033 8.67e-3 -2.96e-4 1.44e-3

1.041 8.38e-3 1.14e-3

1.050 9.52e-3

1.059

σk 6.65e-3 8.69e-4 7.39e-4 7.34e-4 7.97e-4 8.20e-4

Table 3.1 shows a typical difference table. These results were obtained for the function

f(t) = cos(t) + sin(t) + 10−3U(0, 2
√

3), where U(a, b) denotes a uniform random variable

on the interval [a, b], but tables for deterministic problems exhibit similar features.

For the purpose of illustration, the results in Table 3.1 were obtained with h = 10−2;

smaller values of h are usually needed to detect noise for more nonlinear functions. Note

that the entries in the column for the first difference are roughly the same. This result is

to be expected because (2.3) shows that if h is chosen appropriately, then all the entries

in this column are approximations to hf
′
s(0). The entries here are close to the value 10−2

obtained for the smooth function fs(t) = cos(t) + sin(t).

The most interesting feature of Table 3.1 is that the values of the kth-order differences

have differences in sign for k ≥ 2. This is a clear indication that these entries have been

contaminated by noise. We also note that the estimates σk of the noise level εf for these

columns are fairly similar. Theorem 2.3 shows that this must happen for h sufficiently small

and that they must converge to the noise level εf .

Our heuristic for determining whether a specific σk is a good estimate of the noise level

εf is based on the above observations. We use two conditions:

max
{
σj : k ≤ j ≤ k + 2

}
≤ ηmin

{
σj : k ≤ j ≤ k + 2

}
for η = 4.

The entries {T0,k, . . . , Tm−k,k} have differences in sign.

The first condition is a convergence test for σk that requires three consecutive σk to be close

to each other. This condition also indicates that we are interested in estimates of εf that

are expected to be accurate only to a factor of 4. The second condition, as noted above, is

a test that the entries in the kth column of T are due to noise.

9

The results in Table 3.1 show that the above conditions are satisfied for k = 2, 3, 4. In

general, lower-level estimates (smaller k values) are preferred because σ2k is then an average

of more terms and yields better approximations to E
{

[∆kf(t)]2
}

, so in this case we accept

σ2 as the noise level.

The above description is not complete but covers the most important details. We discuss

other details of ECnoise in our computational results. In particular, we discuss the reliability

of ECnoise. Code for ECnoise can be found at http://mcs.anl.gov/~wild/cnoise.

4 Estimating Noise for f : Rn 7→ Rq

We can use the ECnoise algorithm to estimate the noise for a function f : Rn 7→ R around a

base point xb by choosing a direction p ∈ Rn with ‖p‖ = 1 and computing the noise level

of φ : R 7→ R defined by

φ(t) = f(xb + tp). (4.1)

If we assume that (1.3) holds where fs : Rn 7→ R is a smooth function and that the noise

ε : Rn 7→ R has a distribution independent of x, then the noise of φ is independent of p. In

the remainder of this section we make this assumption and define the noise level εf of f as

the noise of φ.

We can also define the noise level εf on Rn via the average (1.1). The proof uses the

techniques in Section 2 and the assumption that the model (1.3) holds with a stochastic

noise ε : Rn 7→ R that is iid in an open neighborhood N(xb). We show that if we define the

n-dimensional version of the first difference by

∆f(x) =
1

2m

m∑
k=1

[f(xk + hk)− f(x)]2 ,

where xk ∈ N(xb) and ‖hk‖ ≤ δ, then the expected value E {∆f(x)} converges to ε2f when

δ goes to zero. We use the fact that (ε(xk + hk)− ε(xk)) has zero mean to show that

E {∆f(x)} =
1

2m

m∑
k=1

[fs(xk + hk)− fs(xk)]2 +
1

2m

m∑
k=1

E
{

[ε(xk + hk)− ε(xk)]2
}
,

and we then rely on the iid assumption to claim that

E
{

[ε(xk + hk)− ε(xk)]2
}

= Var {ε(xk + hk)− ε(xk)} = Var {ε(xk + hk)}+ Var {ε(xk)} .

Since the variance of the noise is constant in N(xb), we have shown that

E {∆f(x)} =
1

2m

m∑
k=1

[fs(xk + hk)− fs(xk)]2 + ε2f ,

and thus, if fs is continuous in N(xb), then

lim
δ→0

E {∆f(x)} = ε2f .

10

This result shows that the scaled average (1.1) is likely to be a good approximation to

the noise level εf if the perturbations hk are sufficiently small. We do not rely on this

approximation because it is a first-order estimate and thus does not take into account the

faster convergence in Theorem 2.3.

Our computational experience with ECnoise in the following sections shows that for the

stochastic and deterministic problems examined, random directions p do provide estimates

that are independent of p within the tolerances in ECnoise. We note that using a random

direction could obscure structured noise, such as noise confined to a line or hyperplane, but

the estimate of εf gives an indication of how this noise contributes to f throughout Rn.

The definition of noise in Rn via (4.1) shows that noise is scale invariant in the sense

that if we consider the mapping x 7→ αf(x) + β for some constants α > 0 and β, then

εαf+β = αεf . Invariance also holds for transformations of the domain. On the other hand,

the noise level is not additive because the noise level of the sum of two functions can be

unrelated to the sum of the noise levels of the two functions. This situation happens, for

example, with f and −f .

We consider only real-valued functions in this work, but we can use ECnoise for a vector-

valued function f : Rn 7→ Rq. The simplest approach is to apply ECnoise to each component

of f and produce an estimate εfk for 1 ≤ k ≤ q. These estimates can be obtained by applying

ECnoise to the components of the function values, and thus it is necessary to evaluate only

the vector-valued function f at m points. In particular, the effort does not grow with the

number of components of f .

The estimates εfk can be combined to provide an estimate for the noise level of f . For

example, if we are interested in the function

f(x) =

q∑
k=1

fk(x)2,

then we can consider
q∑

k=1

ε2fk ,

as an estimate of the noise level of f . It is also possible to produce an estimate of the noise

level directly from f at the same cost, but the individual estimates εfk are likely to point

out what component is the main contributor to the noise level of f .

5 Computational Experiments: Stochastic Computations

Our focus in this section is to validate ECnoise on stochastic functions and investigate the

performance of ECnoise with respect to the number m of function evaluations and the sam-

pling direction p. In the next section, we explore the performance of ECnoise when the

computed function f is deterministic.

We first want to study how ECnoise performs as a function of the direction p when the

computed function follows the model (2.1). As an example, consider the quadratic

f(x) = (xTx)(1 +R), x ∈ R10, (5.1)

11

Figure 5.1: Variation of noise estimates for function (5.1) for 104 random directions p and

different numberm of function evaluations with (left) normal perturbations R ∼ 10−3N(0, 1)

and (right) uniform perturbations R ∼ 10−3U(0, 2
√

3).

under a relative stochastic perturbation R with standard deviation 10−3. Using different

distributions for R (as obtained with Matlab’s rand and randn), we estimate the noise εf
and compute the relative noise εf/f(xb) with respect to a random base point xb.

The main parameters in ECnoise are the sampling distance h and the number m of

additional function evaluations needed by ECnoise. For most of the results in this section we

use h = 10−6 and m ∈ {6, 12, 24}; at the end of this section we consider the performance of

ECnoise as h varies.

Figure 5.1 presents the empirical distributions of the results produced by ECnoise using

104 directions p uniformly distributed in the unit hypercube. The results for both normal

(left) and uniform (right) perturbations are similar. As expected, the variability of the

estimates decreases as the number of evaluations increases because the estimates are based

on more information. The estimates from ECnoise are expected to be accurate only to a

factor of 4, and the results in Figure 5.1 indicate that most estimates are well within this

tolerance and that the variation in the estimates decreases as m increases.

Table 5.1 provides additional information on the results in Figure 5.1. For these results

we compute the rms (root-mean-square) of the noise estimates determined by ECnoise. We

consider ECnoise to have failed if the estimate returned by ECnoise is not within a factor of

η = 4 of this mean. Table 5.1 shows that the rms of the noise estimates are very close to

the predicted noise εf and that the number of failures decreases rapidly with increasing m.

The performance of ECnoise for the quadratic (5.1) is not dependent on the choice of h

because all differences ∆kf approximately vanish for k ≥ 3. This situation does not hold

for non-quadratic functions, but Theorem 2.3 suggests that ECnoise will produce reliable

estimates once h falls below a given threshold.

We now explore the performance of ECnoise for a nonquadratic function where the noise

12

Table 5.1: Performance of ECnoise for function (5.1) with R ∼ 10−3U(0, 2
√

3) and h = 10−6.

m Mean Failures (%)

6 1.00e-3 0.31

8 1.00e-3 0.01

10 9.98e-4 0.00

12 1.00e-3 0.00

14 9.99e-4 0.00

level εf is not known. Consider the function [3, p. 20]

f(x) = (2π)−n/2
∫
Rn

n∏
i=0

1

1 + ri(u, x)
e−
‖u‖2

2 du, (5.2)

where

r0(u, x) =
1

10
; ri(u, x) = ri−1(u, x)exiui−x

2
i /2, i ≥ 1,

and the integral in this function is computed by Monte Carlo integration. This function

represents today’s value of a $1 payment n years from now, with the interest rates following

a lognormal model with variance xi > 0 in year i. We perform Monte Carlo sampling,

without variance reduction techniques, using 5 · 103 standard normal random variables.

Figure 5.2: Variation of noise estimates for Monte Carlo evaluation of (5.2) for different

number m of function evaluations with n = 3 and 5 · 103 Monte Carlo samples.

For our numerical results we used n = 3 and xb = [0.1, 0.1, 0.1]. Figure 5.2 shows

the variation of 104 noise estimates obtained with h = 10−6 and directions p uniformly

distributed in the unit hypercube. This behavior is strikingly similar to that seen for the

perturbed quadratic (5.1), and it again shows that the variance in the estimates decreases

rapidly as m increases.

Table 5.2 presents the (rms) mean of the noise estimates and the percentage of failures

for (5.2) as a function of the number of sample points m. As before, we consider ECnoise to

13

Table 5.2: Performance of ECnoise for function (5.2) with h = 10−6.

m Mean Failures (%)

6 4.82e-4 0.35

8 4.75e-4 0.05

10 4.80e-4 0.00

12 4.78e-4 0.00

14 4.78e-4 0.00

have failed if the estimate returned by ECnoise is not within a factor of η = 4 of this mean.

The results in this table show that the mean of the noise estimates is reasonably constant

and that the percentage of failures decreases rapidly with increasing m. The results also

show that for a suitable h, the percentage of failures for a nonlinear stochastic function is

similar to that for the quadratic (5.1).

We have been using a fixed value of the sampling distance h but we now explore the

performance of ECnoise as h varies but m is fixed. We will show that the results that we have

presented are generally unchanged as h varies over a wide range. As partial justification

of this claim Table 5.3 shows the 10%, 50%, and 90% quantiles for noise estimates of (5.2)

obtained from 104 random p for different choices of h.

Table 5.3: Consistency with respect to h of ECnoise estimates for function (5.2) using 104

random p directions and m = 6.

h 10% Quantile Median 90% Quantile Failures (%)

10−13 2.64e-4 4.39e-4 6.60e-4 0.38

10−11 2.62e-4 4.38e-4 6.57e-4 0.38

10−9 2.62e-4 4.36e-4 6.58e-4 0.33

10−7 2.62e-4 4.36e-4 6.62e-4 0.39

10−5 2.63e-4 4.39e-4 6.59e-4 0.30

10−3 2.63e-4 4.40e-4 6.62e-4 0.37

10−1 3.03e-4 4.98e-4 7.53e-4 0.83

These results indicate that the distributions of the noise estimates are nearly identical

for h ≤ 10−3. Because of the scaling of this problem, even the estimates obtained when

h = 0.1 are relatively reliable, though they illustrate a slightly positive bias, resulting from

a choice of h that is too large, as predicted by (3.1).

Indeed, for the stochastic functions that we have tried, the noise estimates are essentially

independent of the choice of h, at least for h ≤ 10−3. Theorem 2.3 predicts that this

situation will happen as h converges to zero, but it is interesting to see that for these

stochastic problems consistent estimates occur for h ≤ 10−3. In the next section we will see

that for similarly scaled deterministic functions, smaller values of h will be needed.

We conclude this section by noting that ECnoise is a variance estimator in the stochastic

case and that in this setting it is possible to obtain more accurate results with other esti-

14

mators. However, our results show that the ECnoise estimates are competitive and cater to

situations where it is more efficient to sample f at distinct points.

6 Deterministic Experiments: Krylov Solvers

In the remainder of this paper we study the behavior of the noise estimator ECnoise on

deterministic computations where the stochastic model (2.1) and analysis in Section 2 do

not formally hold.

As pointed out in the introduction, the noise level εf is likely to provide a lower bound

on the rounding errors in computing f . The difference between the roundoff error and εf
can be significant as shown by the function described in [14, pages 15–16]. In this case the

computed f yields f(t) = 1 for t > 1, but f(t) = t in exact arithmetic. Thus, the rounding

errors are large for t � 1. On the other hand, the computed f satisfies (2.1) with fs ≡ 1

and εf = 0 for any t > 1.

We illustrate our results for deterministic computations with a fundamental component

in scientific computations: the solution of sparse systems of linear equations. Given a

symmetric positive definite matrix A, consider the function

f(x) = ‖y(x)‖2, where Ay(x) = x, (6.1)

and the solution to the linear system Ay = x is computed by three popular Krylov solvers

available in MATLAB: pcg (preconditioned conjugate gradients method), bicgstab (biconjugate

gradient stabilized method), and minres (minimum residual method) [1]. Other MATLAB

solvers were tested, but each behaved similarly to one of the three solvers here. Each solver

terminates when the relative residual falls below a tolerance τ . Unless otherwise noted,

τ = 10−3.

We consider all symmetric positive definite matrices of dimension less than 104 in the

University of Florida (UF) Sparse Matrix Collection [7]. These 116 matrices vary in dimen-

sion from n = 14 to n = 9801, with n ≥ 103 for 63 of these matrices. To better mimic the

situation in practice, we scale each of these matrices by their diagonals,

A← D−1/2AD−1/2, D = diag(ai,i). (6.2)

This scaling dramatically reduces the condition number of most of the matrices, but 42

matrices remain with condition number greater than 105 and 19 matrices with condition

number greater than 108.

Our base point is chosen as xb = Ar, where r is a random vector with components from

a uniform distribution in [0, 1]. Thus, y(xb) = r lies in the unit hypercube. Our random

directions p are also drawn uniformly from the unit hypercube.

We first examine the consistency of the noise estimates for these 116 matrices as the

sampling distance h goes to zero but the direction p is fixed. In all cases the base point

xb is fixed, and m = 8 additional evaluations were made at h = 10−k for k ∈ {10, . . . , 15}.
For each matrix and solver, we also record the number of iterations required to satisfy the

termination criteria for each of the six values of h.

15

Figure 6.1 shows the noise estimates produced by ECnoise on a log10 scale as a function

of the mean of the number of iterations for the six values of h. Thus, we are ordering the

results using a criterion that roughly corresponds to the difficulty of the problem. Each bar

in this figure shows the range of noise levels for one of the matrices in the UF collection.

Figure 6.1: Relative noise estimates on a log10 scale for 6 values of h as a function of the

number of Krylov iterations (m = 8, τ = 10−3). Each bar shows the range of noise estimates

for h = 10−k, k ∈ {10, . . . , 15}; here, × denotes the mean across the 6 values of h.

The results for bicgstab in Figure 6.1 show that the noise level tends to increase as

the number of iterations increases. On the other hand, the number of Krylov iterations

needed by pcg and minres alone is not a good predictor of the noise level for any one matrix,

especially as more iterations are required. There does not seem to be a clear relationship

between the noise level and other characteristics of the problem or solver. We did examine

the dependence on the condition number, but we found no clear dependence for any of the

solvers.

The most interesting aspect of the results in Figure 6.1 is that, with few exceptions,

the noise estimates produced for h ∈ [10−15, 10−10] are consistent in the sense that they are

within a factor of 16 of each other. This is the desired result because the acceptance criteria

in ECnoise aim for a factor of η = 4 difference from the noise level εf , so two estimates may

differ by a factor of η2 = 16.

The results in Figure 6.1 are remarkable because the convergence result for the noise

estimates in Theorem 2.3 assumes that the computed f is stochastic. This is not the

16

Figure 6.2: Relative noise estimates on a log10 scale for 1000 different p (m = 8, h = 10−12,

τ = 10−3). The 116 UF matrices are sorted by the median relative noise found by bicgstab.

Boxes represent the central 90% of the estimates, with outer lines extended to the extrema.

case with the functions in this section, and yet the performance of ECnoise is similar to

the performance for the stochastic problems in Section 5. In particular, noise estimates

produced by bicgstab and minres were consistent for all 116 matrices. In five cases the noise

estimates for pcg were not consistent; that is, the noise estimates differ by more than a

factor of 16. The reasons for these variances are interesting and will be discussed in the

next section.

Figure 6.1 shows significant differences in the amount of noise produced by these solvers.

These differences can be explained for minres by noting that since the residuals are nonin-

creasing with minres, the final iterate in minres is likely to be a continuous function of the

starting point. Thus, we can expect low noise for minres, and this is shown in Figure 6.1. In

the case of bicgstab, note that the MATLAB implementation is able to stop at mid-iteration.

Thus, bicgstab can be highly discontinuous, thereby generating a significant amount of noise,

as shown in Figure 6.1. A similar explanation applies to pcg. In this case, the residual norms

tend to oscillate in magnitude, and thus the number of iterations required for convergence

can change significantly with small changes. The irregular convergence of Krylov solvers is

described in detail in [21, Chapter 8].

We now turn to the consistency the noise estimates as a function of p. Figure 6.2 plots

the relative noise estimates for 103 directions p with m = 8 and h = 10−12. The matrices are

17

sorted by the median relative noise found by bicgstab; this ordering explains the monotone

behavior of the noise estimates for bicgstab. The ordering also shows that the sets of noisy

matrices for bicgstab and pcg are roughly the same. As in Figure 6.1, minres tends to not

produce noisy problems.

The results in Figure 6.2 show that the noise estimates produced by ECnoise are indepen-

dent of the direction p when the sampling distance h is sufficiently small. Although these

results are for h = 10−12, we have already shown in Figure 6.1 that the noise estimates are

consistent once we reach h = 10−10, so we can expect that these results will be unchanged

for h below 10−10. The most likely explanation for the independence with respect to p is

that random choices of p ignore any structure in the matrix A or solver and thus noise in

the function defined by (6.1) is independent of the direction.

We have already noted that the matrices for which the noise is larger depends on the

solver being used, and this can also be seen in Figure 6.2. Here we also see that bicgstab

is generally the noisiest of the solvers, with bicgstab, pcg, and minres having relative noise

greater than 10−10 on 33, 18, and 1 matrix, respectively.

7 Representative Data

ECnoise estimates noise from m + 1 function values, and thus it may provide misleading

estimates if the function values are not representative. This situation is not surprising

because ECnoise is providing global information for a function defined on Rn based on only

m+ 1 pieces of data. We emphasize this point by examining the performance of ECnoise on

two matrices from the UF collection.

Figure 7.1 plots the function t 7→ f(xb+ tp), where f is defined by (6.1) using pcg at 100

points in the interval [−h, h] where h = 10−6. The matrices are bcsstk05 on the left and

bcsstk28 on the right. The base point xb and the direction p are the same used to generate

the results in Figure 6.2. For both functions, the larger spikes are caused by a difference in

the number of pcg iterations needed to obtain the function value.

The noise estimate obtained depends on whether the input values used a heterogeneous

number of iterations. For f1 (left) the relative noise estimate is 5 ·10−6 if all function values

required 65 iterations and 10−4 if all function values required 66 iterations; the estimate

climbs to 10−3 if any mixture of the two is encountered.

We note that the iteration heterogeneity persists for both functions for smaller sampling

distances h than 10−6; for all h examined, f1 and f2 require an additional iteration roughly

35% and 8% of the time, respectively. Consequently, it is much more difficult to obtain the

higher noise estimate for f2 than it is for f1.

Increasing the number m of function evaluations improves the chances of seeing both

types of noise. In general, if the evaluation of f requires k1 iterations with probability ρ

and k2 iterations with probability 1− ρ, then we will obtain the higher noise estimate with

probability

q(m) = 1− (ρm+1 + (1− ρ)m+1).

This represents the probability that the m+1 sample function values will require a different

18

Figure 7.1: Noisy deterministic functions of the form (6.1) generated by pcg with τ = 10−3.

The matrices are bcsstk05 (left) and bcsstk28 (right). The chance of seeing an iteration

difference in f1 is much larger than f2.

number of iterations.

Consistency of the estimates may not be obtained for some matrices if the solver pro-

duces a problem where q(m) is not near 0 or 1. For example, for the bcsstk28 matrix with

the pcg solver ρ ≈ 0.08, and then q(8) = 0.53 for m = 8. In this situation the estimates re-

turned by ECnoise may not be consistent if the function values returned by pcg differ greatly

as the iteration counts change. As seen in Section 6, this happened for five matrices for the

pcg solver. On the other hand, ρ ≈ 0.35 for the bcsstk06 matrix, and thus q(8) = 0.97.

Thus, we can expect consistent noise estimates for this matrix, and this situation is verified

by our computational results. In general we can expect to obtain consistent estimates by

increasing m even if ρ is small. For example, for the bcsstk28 matrix with the pcg solver

ρ ≈ 0.08, and then q(8) = 0.53, but q(64) = 0.996.

These two examples stress the importance of providing representative data to the ECnoise

algorithm. Whether the function f is stochastic or deterministic, the choice of m should bal-

ance the computational expense of evaluating the function while ensuring that the desired

noise is represented in the data with sufficiently high probability. In our Krylov examples,

this corresponds to obtaining either heterogeneous or homogeneous iteration numbers with

high probability. For other applications, further study is required. Indeed, obtaining rep-

resentative data could also be an issue in the stochastic case when the noise comes from a

heavy tail distribution and it is necessary to capture that heavy tail.

8 Non IID Noise

The computational results for Krylov methods in Section 6 provide strong evidence for the

claim that the computations justified by the stochastic analysis of Section 2 can yield insights

on deterministic problems On the other hand, it is known (see, for example, [4, 14]) that

19

probabilistic and distributional assumptions on finite precision calculations are not generally

valid. Our aim in this section is best summarized by a quote of Hull and Swenson [16] from

1966:

There is no claim that . . . successive errors are independent. The question to be

decided is whether or not these particular probabilistic models of the processes

will adequately describe what actually happens.

We examine some of the issues that arise when the iid assumption fails with the univariate

rational function of Kahan (further examined in [14, p. 26]),

r(x) =
622− x(751− x(324− x(59− 4x)))

112− x(151− x(72− x(14− x)))
.

For this function it seems especially unreasonable that the deterministic deviations of the

computed r from a smooth function could be modeled as independent and identically dis-

tributed stochastic noise in a neighborhood of x = 1.6. This situation can be seen from

Figure 8.1 (left) where r is is evaluated at machine precision increments near x = 1.6.

Figure 8.1: Estimating non-IID noise: (left) Kahan’s function r at x = 1.6 + 2−52k for

k = −150, . . . , 150 and (right) absolute noise estimated for r with h = 2−10, . . . , 2−52.

What noise estimate would ECnoise produce for this function, which clearly violates the

iid assumption? Figure 8.1 (right) shows that for all h examined, including one correspond-

ing to machine precision, the absolute noise would be estimated within a factor 4 of 2·10−14,

agreeing with the scale of Figure 8.1 (left). Though unlikely, a sample of m+1 points could

have been evaluated solely on one of the parallel lines shown and the noise would have been

estimated as 2 · 10−15. Thus, although the theory of Section 2 does not directly apply,

algorithm ECnoise produces the expected results.

20

9 Convergence Tests in Derivative-Free Optimization

We now examine how the noise level εf could be used in convergence tests for derivative-

free optimization solvers. We seek convergence tests that are scale-invariant and that are

suitable for noisy optimization problems.

Let {xk} be the sequence of iterates generated by an optimization algorithm for an

unconstrained problem defined by a mapping f : Rn 7→ R. We restrict attention to iterates

that generate strict descent in the function value, so that

f(xk+1) < f(xk), k ≥ 0,

but stronger restrictions could also be considered. A typical convergence test for an uncon-

strained optimization solver is

‖∇f(x)‖ ≤ τ,
where τ is a user-supplied tolerance, but this test is not available for derivative-free solvers

unless the gradient is replaced by some approximation. Moreover, selecting a reasonable

choice of τ ∈ (0, 1) is difficult because τ is scale-dependent.

We are interested in a convergence test based on the noise level εf . We claim that for

derivative-free solvers we should terminate the algorithm when

0 < f(xk)− f(xk+1) ≤ µ εf , (9.1)

where µ ≥ 1 is a tolerance set by the user. This test is invariant to changes in scale since

the calculation of εf via ECnoise is scale-invariant. An alternative scale-invariant test is

0 < f(xk)− f(xk+1) ≤ τ |f(xk)|,

for some τ ∈ (0, 1), but this test would be sensible only if τ were safely larger than the

relative noise level. In addition, this test might fail if the function values {f(xk)} converged

to a value near zero. A possible disadvantage of the convergence test (9.1) is that it could

be satisfied far away from a minimizer because of a small step, but this situation does

not usually arise because derivative-free solvers tend to take long steps unless they have

converged or stagnated.

We illustrate the use of the convergence test (9.1) with the α-pinene problem [6,8]. This

problem requires the reaction coefficients θ that minimize the deviation between the data

and model

f(θ) =

8∑
j=1

‖y(τj ; θ)− zj‖2, (9.2)

where the data zj are concentration measurements at times τ1, . . . , τ8 and the model for the

concentrations y(·, θ) is

y′1 = −(θ1 + θ2)y1

y′2 = θ1y1

y′3 = θ2y1 − (θ3 + θ4)y3 + θ5y5

y′4 = θ3y3

y′5 = θ4y3 − θ5y5

21

for t ≥ 0. Initial conditions are given. We evaluate f at a set of parameters θ by using

MATLAB’s ode45 solver with tolerances (τrel, τabs) = (10−3, 10−6).

The α-pinene problem is a typical parameter estimation problem where the model is

defined by differential equations. The use of an iterative solver in the solution of the

differential equations introduces computational noise into the calculation of f , but the noise

is fairly mild because the equations are not stiff. We note that the differential equations

are linear for a fixed set of parameters θ.

We use the Nelder-Mead algorithm NMSMAX [13] to minimize the α-pinene function

defined by (9.2). Given a starting point x0 (the vector θ of reaction coefficients), the

Nelder-Mead method generates an initial simplex based at x0 and updates this simplex

based on the behavior of f at the iterates. A typical convergence test requires that the size

of the simplex drop below a given tolerance. For example, if v0, . . . , vn are the vertices of

the current simplex, we could require that

max
1≤k≤n

{‖vk − v0‖} ≤ τs max {1, ‖v0‖} (9.3)

for some tolerance τs > 0. This test is likely to work for large values of τs but small values

of τs may require a large number of function evaluations because the test does not take

into account the noise level in f . If this test is used in the Nelder-Mead algorithm with

τs = 10−6, then convergence occurs after 392 function evaluations. On the other hand, if

we use τs = 5 · 10−16 (about twice machine precision), then convergence occurs after 698

function evaluations. We denote this iterate by x∞, since this is near the limit of the iterates

generated by the Nelder-Mead method.

The image on the left of Figure 9.1 plots the function values {f(xk)} produced by the

Nelder-Mead method when we set τs = 5 · 10−16, while the data on the right shows the

results of using the convergence test (9.1) with various values of µ. We implement the

convergence test (9.1) by computing the noise level εf when the iterates {xk} appear to be

converging. For the Nelder-Mead method this can be done, for example, by monitoring the

size of the simplex and computing εf when (9.3) holds. If we use τs = 10−2, then at this

point ECnoise estimates that the noise level of f is εf = 8.9 · 10−14. We can then continue

with the Nelder-Mead method until (9.1) is satisfied.

Tolerance values of µ ∈ [1, 100] in (9.1) are likely to produce function values near f(x∞),

and this situation is confirmed by the data in Figure 9.1. Indeed, the values of f(xk)−f(x∞)

for µ = 1 and µ = 10 are within an order of magnitude of µ εf . The deviation between

f(xk) − f(x∞) and µ εf is likely to grow larger for µ > 10 since the algorithm will not be

operating near the noise level.

While beyond the scope of the present work, we note that our implementation of the

convergence test (9.1) can be made more robust for the Nelder-Mead method by requiring

that

max
1≤k≤n

{|f(vk)− f(v0)|} ≤ µ εf ,

where v0, . . . , vn are the vertices of the current simplex. We also note that these ideas can

be extended to other derivative-free solvers by replacing the vertices of the simplex by a set

of nearby iterates.

22

µ k f(xk)− f(x∞)

100 377 2.6 · 10−10

10 412 6.7 · 10−12

1 440 6.5 · 10−13

Figure 9.1: Function values {f(xk)} generated by the Nelder-Mead method (left) and per-

formance of the convergence test (9.1) as a function of µ (right)

10 Conclusions and Future Work

In this paper we have proposed and analyzed a procedure for determining the sensitivity of a

computed function to small perturbations in the parameters. We motivated computational

noise for deterministic computations via the scaled average (1.1) but defined computational

noise in terms of the stochastic model (1.3).

We have extended Hamming’s work on differences to estimate the noise level εf of f

with only minor assumptions. In particular, we do not assume that the noise is generated

by a Gaussian process, and our method naturally filters out systematic errors resulting in

noise with a nonzero mean.

We have shown that our ECnoise procedure produces estimates of the noise that are

consistent, within a factor η = 4, provided that the sampling distance is sufficiently small.

In support of the underlying theory, our noise estimates for the stochastic functions of

Section 5 are consistent with respect to both the stepsize and the sampling direction.

Furthermore, our noise estimates are remarkably consistent for the fundamental deter-

ministic problem – where the stochastic theory does not directly apply – of solving a sparse

linear system using a Krylov solver. Our experiments show that noise in these functions

depends heavily on the solver employed and cannot be predicted by the condition number

of the matrix considered. These noise estimates reveal that the ability to reduce linear

algebraic operations by taking “half iterations,” a perceived strength of bicgstab, can result

in substantial noise, while ensuring monotonicity of the residuals, such as done by min-

res, results in round-off noise only. Our estimate even provides reasonable estimates for a

deterministic function, which clearly violates our iid assumption.

Our motivation is the analysis of functions that represent the result of a computationally

expensive simulation. For a noise estimate to be practical in this setting, the number m of

additional function evaluations required should be kept at a minimum. For the stochastic

functions considered here, as few as m = 6 function evaluations sufficed; and for the Krylov

problems, m = 8 was generally adequate. As discussed in Section 7, however, a user

should balance the computational effort required (as measured by m) with the probability

23

of capturing the desired noisy behavior.

We now briefly discuss avenues of future theoretical work. For stochastic functions,

we can derive sufficient conditions to ensure that the variability of the noise estimator σk
tends to 0 as the number of evaluations m increases. Our results for differences based on

equally spaced points can also be extended to other point distributions using interpolation

theory. Doing so could be especially valuable, for example, when function values at a set of

Chebyshev points, over a sufficiently small interval, are available at no additional expense.

For deterministic functions, it remains to define a suitable framework that will allow for

theoretical analysis of computational noise.

We believe that an estimate of the noise in a computed function or solver will prove

invaluable when developing and working with coupled solvers whose inputs are assumed to

be smooth. In such cases, a balance must be struck between the truncation error, com-

putational noise, and the computational expense of the calculation, as typically controlled

through a set of user-specified tolerances.

Acknowledgments

Additional numerical tests, conducted by Julio Góez while he was a Givens Associate at

Argonne, helped support the findings reported here. We are grateful to David Bindel for

suggesting the work of Kahan on non iid noise. We are also grateful to the editor and

three referees for their comments, which led to an improvement in our presentation of

computational noise.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM,

Philadelphia, Pennsylvania, 1994.

[2] J. Boorggaard, D. Pelletier, and K. Vugrin, On sensitivity analysis for prob-

lems with numerical noise, no. AIAA 2002-5553 in AIAA Symposium on Multidisci-

plinary Analysis and Optimization, Atlanta, Georgia, 2002.

[3] R. E. Caflisch, Monte Carlo and Quasi-Monte Carlo methods, Acta Numerica, 7

(1998), pp. 1–49.

[4] F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations,

Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1996.

[5] T. T. Chisholm and D. W. Zingg, A Jacobian-free Newton–Krylov algorithm

for compressible turbulent fluid flows, Journal of Computational Physics, 228 (2009),

pp. 3490–3507.

[6] COPS, Constrained Optimization Problem Set. See www.mcs.anl.gov/~more/cops.

24

[7] T. A. Davis, The University of Florida Sparse Matrix Collection, 2009. Available at

http://www.cise.ufl.edu/research/sparse/matrices.

[8] E. D. Dolan, J. J. Moré, and T. S. Munson, Benchmarking optimization soft-

ware with COPS 3.0, Technical Memorandum ANL/MCS-TM-273, Argonne National

Laboratory, Argonne, Illinois, 2004.

[9] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Computing

forward-difference intervals for numerical optimization, SIAM J. Sci. Statist. Comput.,

4 (1983), pp. 310–321.

[10] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic

Press, 1981.

[11] M. S. Gockenbach and W. W. Symes, Adaptive simulation, the adjoint state

method, and optimization, in Large-Scale PDE-Constrained Optimization, L. T.

Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, eds., Springer,

2003, pp. 281–297.

[12] R. W. Hamming, Introduction to Applied Numerical Analysis, McGraw-Hill, 1971.

[13] N. J. Higham, The Matrix Computation Toolbox. Available at www.maths.

manchester.ac.uk/~higham/mctoolbox.

[14] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and Ap-

plied Mathematics, Philadelphia, Pennsylvania, second ed., 2002.

[15] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.

Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and differ-

ential/algebraic equation solvers, ACM Transactions on Mathematical Software, 31

(2005), pp. 363–396.

[16] T. E. Hull and J. R. Swenson, Tests of probabilistic models for propagation of

roundoff errors, Communications of the ACM, 9 (1966), pp. 108–113.

[17] D. Knoll and D. Keyes, Jacobian-free Newton–Krylov methods: A survey of ap-

proaches and applications, Journal of Computational Physics, 193 (2004), pp. 357–397.

[18] J. N. Lyness, Has numerical differentiation a future?, in Proceedings Seventh Mani-

toba Conference on Numerical Mathematics, Utilitas Mathematica Publishing, 1977.

[19] J. J. Moré and S. M. Wild, Estimating derivatives of noisy simulations, Tech.

Rep. Preprint ANL/MCS-P1785-0810, Mathematics and Computer Science Division,

August 2010.

[20] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, no. 37 in Texts

in Applied Mathematics, Springer, 2000.

25

[21] H. A. van der Vorst, Iterative Krylov methods for large linear systems, Cambridge

University Press, 2003.

[22] K. E. Vugrin, On the effect of numerical noise in simulation-based optimization, Mas-

ter’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,

2003.

[23] , On the effects of noise on parameter identification optimization problems, PhD

thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2005.

The submitted manuscript has been created by the University of Chicago as

Operator of Argonne National Laboratory (“Argonne”) under Contract DE-

AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government

retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irre-

vocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by

or on behalf of the Government.

26

